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In this work we study the problem of physical (reversible) adsorption of a linear polymer in a good sol-
vent in the case when the container of the polymer-solvent system is taken to be the Mandelbrot-Given
(MG) model of a percolation cluster and the plane-filling (PF) fractal lattice. We accept the self-avoiding
random walk as a model of the linear polymer, and, in addition, we assume that the adsorption energy
pertaining to the bonds that lie in the layer next to the adsorbing boundary depends on their directions
and is different from the adsorption energy for the bonds that belong to the boundary. Under these con-
ditions we have found, in the case of both fractals (MG and PF), that the crossover exponent ¢ (associat-
ed with the number of adsorbed monomers) continuously varies with the parameter that measures the
monomer-surface interaction along the bonds that are perpendicular to the adsorbing boundary. We dis-
cuss this result and its relevance to the understanding of the validity (violation) of the universality hy-

pothesis in the case of critical phenomena on fractals.

PACS number(s): 36.20.Ey, 64.60.Ak, 05.50.+q

I. INTRODUCTION

Polymer adsorption on a rigid impenetrable adsorbent
has been widely studied because of its practical impor-
tance, such as in the domain of oil recovery, chromatog-
raphy, stabilization of colloids, and surface protection.
The statistical mechanics approach to this problem has
been successfully applied, in particular in the case of a
good solvent that contains only one linear polymer in-
teracting with the impenetrable wall. Broadly speaking,
the success consists in the recognition of the polymer ad-
sorption problem as a surface critical phenomenon.
Motivated by the relevant works done in the case of Eu-
clidean lattices, several studies have appeared recently
[1-5] in which it has been assumed that the adsorbate is
immersed in a fractal container, which, on the other
hand, should have its own practical relevance. In this
work we have studied the same problem in the case when
the fractal container is taken to be the Mandelbrot-Given
model of a percolation cluster and the plane-filling fractal
lattice and assuming the presence of appropriate interac-
tions between the polymer and the adsorbing boundary of
the fractal lattices. In the case of both fractals, we have
found that the crossover exponent ¢ (associated with the
number of adsorbed monomers) continuously depends on
a parameter that measures the monomer-surface interac-
tion in the layer contiguous with the impenetrable bound-
ary. This appears to be a different result that should be
relevant to the understanding of the validity (violation) of
the universality hypothesis in the case of critical phenom-
ena on fractals and hence we are going to elaborate on
the way this result has been obtained and discuss its
significance in the framework of the present knowledge
about continuously varying critical exponents for various
model systems.

This paper is organized as follows. In Sec. II we
present a general approach to the calculation of the criti-
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cal exponent ¢ starting from properties of the corre-
sponding partition functions (generating functions) that
describe the polymer adsorption statistics. Then, the
same section is divided in two subsections, in which we
provide separate exact renormalization-group calcula-
tions of ¢ for the Mandelbrot-Given fractal and for the
plane-filling fractal. Finally, in Sec. III we give an overall
discussion of the obtained results and pertinent con-
clusions.

II. CALCULATION
OF THE CROSSOVER EXPONENT

We describe equilibrium properties of a linear polymer
in a good solvent by the self-avoiding walk (SAW) model,
which is a random walk that must not contain self-
intersections. We assume that the walk is performed on a
lattice and make a correspondence between a step of the
walk and a monomer of the polymer chain. In the termi-
nology that applies to the SAW, we assign the weight x
(fugacity) to each step in the bulk (away from the adsorb-
ing boundary) and the weight xw to each step performed
on the bg}mdary. Here w is the Boltzmann factor
w=e , where €, is the energy of a monomer lying
on the adsorbing wall and kT is the product of the
Boltzmann constant and the temperature of the solvent.
In order to promote competition between the adsorbed
and desorbed polymer phases, it is necessary [1] to intro-

s —€,/kT .

duce one additional factor t=e * in such a way that
xt is the weight of those steps that are performed in the
layer adjacent to the wall, while €, is the energy of the
corresponding monomer-wall interaction. Of course, one
can introduce additional weighting factors (which may
describe different steps of the walk), but it would not sub-
stantially change the discussion that follows.

The grand partition function (generating function) of
the problem under study can be written in the form
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Cx,w,n)=3 Zy(w,)x",
N=1

2.1

where the partition function Z, for a given number of
steps N is given by

N
Zy(w,t)=3 Cy(M,L)wMtt,

M,L
with Cy(M,L) being the total number of all possible
SAWs of N steps, out of which M are performed on the
adsorbing boundary and L are made in the layer next to
the boundary. The statistics of SAWs displays critical
behavior when (2.1) becomes singular, that is, when x
reaches from below the value x_ that, for large N, satisfies

(2.3)

(2.2)

ZN(w,t)ch=1 s

whereupon one can write [6] the corresponding free ener-
gy per step (per monomer)

S eing =KT Inx,(w,1) . 2.4)

In addition, we can establish a relation between x, and
the average number of the adsorbed monomers (M ).
Indeed, by definition (M ) is given by

N
3 MCy(M,L)yw™:tt
(M)=2E

dInZy
=w .

Zy(w,t) ow 2.5)

For the critical fugacity x., the average number (N ) of
the monomers that comprise the polymer chain is very
large and consequently we can insert (2.3) in (2.5)

(M) _ d1nx,
(N)Y 3w

In the high-temperature region, at the critical fugacity x,
and small w (for given 7), the polymer is in a bulk state
and (M) is vanishingly small, while in the low-
temperature region, for large w, the adsorption takes
place and (M) is proportional to (N ). Between the
high- and low-temperature regions, there is a crossover
temperature T, such that the number of adsorbed mono-
mers is given by the power law

(M)~(N)*,

(2.6)

2.7

where ¢ is the crossover exponent [7]. Now we would
like to establish a relation between the crossover ex-
ponent ¢ and the properties of the critical manifold
x.(w,), for the polymer adsorption problem, in the space
(x,w,t). To this end, we first denote by w * the value of w
for T=T,. In the neighborhood of a point on the line
xX=x,(w?*,t), which is expected to be a tricritical point,
we substitute (x* —x_.) ! for the conjugate variable { N ),
so that (2.6) and (2.7) give

w* axc

(xF—x ) ¢~— (2.8)

xc’" Jw

Taking into account that w* /x* appears here as a con-
stant, we find
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(xF—x,)~(w—w*)"? . (2.9)

This simple relation, together with (2.4), will be useful in
analyzing phase diagrams of the problem under study
and, in particular, it will be helpful in cases of numerical
corroboration of results obtained through the
renormalization-group approach to the problem.

A. The Mandelbrot-Given fractal

In this subsection we apply the exact renormalization-
group (RG) method to study the problem of polymer ad-
sorption in the case of the Mandelbrot-Given (MG) frac-
tal, which was proposed as a model for the percolation
cluster [8,9]. More precisely, we will study the backbone
of the MG fractal (see Fig. 1) as we expect that the re-
moved dangling bonds do not affect the critical behavior
of the accepted SAW model. In this case the impenetr-
able adsorbing boundary appears to be the one-
dimensional edge of the fractal backbone and in order to
calculate the critical exponent ¢ we need to introduce the
three restricted partition functions B™ c™ and D™,
which are relevant to the nth stage of the fractal con-
struction (see Fig. 2). For arbitrary n, the self-similarity
of the fractal under study implies the recursion relations

B'=B3+B’, (2.10)
C'=C*+C?D?*B , (2.11)
D'=DB*+DB*, (2.12)

where we have used the prime for the nth-order partition
functions and no indices for the (n —1)th-order partition
functions. In fact, Egs. (2.10)—(2.12) are the RG trans-
formations and B, C, and D can be thought of as the RG
parameters. In accord with the physical picture de-
scribed at the beginning of this section, we assume the in-

itial conditions
BO=x, CO=xw, DO=xt, (2.13)

which are pertinent to the corresponding bonds of the
MG fractal lattice. The set of the RG transformations

has three nontrivial fixed points (byg,0,b8Gt),
M
HE M
O ]
I_ll: :}Ll
FIG. 1. Backbone of the Mandelbrot-Given (MG) fractal

model of the percolation cluster [8,9], at the n =3 stage of the
fractal construction. The shaded region depicts the impenetr-
able wall, with the adsorbing boundary whose fractal dimension
d; is equal to one. The fractal dimension d, of the MG fractal
is equal to In6/In3.
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FIG. 2. Diagrammatic representation of the three restricted
partition functions for an nth stage construction of the MG
fractal. The fractal interior structure is not shown (it is mani-
fested by wiggles of the SAW paths).

[b¥c,Crc (1), bt ], and (0,1,0), which we shall term,
respectively, the bulk, crossover, and adsorption fixed
point. Here we have introduced the notation

_ 172

v5—1

2 (2.14)

*
by =

for the fixed point value of (2.10). On the other hand,
Cc(=1[V (bl Pt*+4— (b )] (2.15)

is the parameter-dependent solution of (2.11) for the fixed
point values B* =by; and D*=byt.

Knowing the fixed points of the RG equations
(2.10)-(2.12) and starting with the initial conditions
(2.13), we can perform an analysis of the domains of at-
traction of particular fixed points in the space of the in-
teraction parameters w and ¢. Our results of this analysis
are depicted in Fig. 3, where there is one main curve
w*(t)=Cgg(t)/byg, which divides the entire space in
two parts: the bulk region (below the curve) and the ad-
sorption region (above the curve). The bulk region is in
fact the domain of attraction of the bulk fixed point
(bc»0,bict) that is characterized by only one relevant
eigenvalue Ap=3(b¥g)?+5(b¥s)*=3.76393, which

MG ]
Adsorbed phase

0.8 |

0.6 |

exp (-¢,/kT)

Bulk phase

0.4 |-

w

02 L

0.0 L

ﬁ 3 4 N
t=exp(-¢g,/kT)

FIG. 3. “Phase diagram” for the MG polymer adsorption
problem in the space of the interaction parameters w and ¢. One
should note that there are two phases (the bulk phase and the
adsorbed phase), which are separated by the crossover line
w=w?*(t). The solid circle (located at =0 and w=1/b¥g)
corresponds to the repulsive fixed point (byg,1,0) and can be
associated with the first-order phase transition. The latter fact
has been confirmed by the numerical analysis of f,, that is
given by (2.4).
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gives the end-to-end distance critical exponent
vp=In3/InA;=0.828 85. On the other hand, the ad-
sorption region is the domain of attraction of the adsorp-
tion fixed point (0,1,0), where the end-to-end distance
critical exponent v 4 is equal to 1, implying that the poly-
mer is entirely adsorbed. Finally, if the iteration of the
RG transformations starts with a point on the line
w=w*(t), the crossover fixed point [b g, Cric(?), bt ]
is reached, which has two relevant eigenvalues Az and
A4(t) with the distinctive property that the second one
depends on the interaction parameter ¢, that is,
Ag(1)=3[Cs ()P +2(b ¥ )’ Cs ()%, Within the RG
approach, the two eigenvalues Ap and A,(z) determine
the crossover exponent ¢ through the relation [1]

_ (2.16)
T lnAg :
which in the case under study gives
In{3[Cs (1) P+2(b s P Clig (1)t?
()= { MG MG /" C M } 2.17)

In[3(b¥ > +5(bkc )]

Hence one can notice that in the case of the MG fractal
the crossover exponent ¢ continuously depends on the in-
teraction parameter ¢ that measures the monomer-surface
interaction in the layer contiguous with the impenetrable
boundary. The relation (2.17) is plotted in Fig. 4, where
one can see that ¢(z) is a continuously varying (monotoni-
cally decreasing) function of z. We would like to em-
phasize here that we have confirmed this finding by ob-
taining the same graph through the complementary ap-
proach presented at the beginning of this section, that is,
using directly the formula (2.9) for numerical evaluation
of the exponent ¢.
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t=exp(- g,/ kT)

FIG. 4. Crossover exponent ¢ for the adsorption problem on
the MG fractal. The solid curve is given by Eq. (2.17), whereas
the dotted line represents the asymptotic value of ¢ when
t— o, i.e. ¢, =In2/In(6—V'5). In the opposite limit, that is,
when t—0, the crossover exponent approaches
¢o=In3 /In(6—V'5). The limiting values ¢, and ¢, may be
compared with the specific lower limit ¢,=In(Az/2)/InAp
=0.47705 and the upper limit ¢, =In3/In6=0.613 15, which
follow from the phenomenological proposal of Bouchaud and
Vannimenus [1].
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B. The plane-filing fractal

The plane-filling (PF) fractal lattice has two distinctive
properties in comparison with the MG fractal and the
Sierpinski gaskets (SG’s) that were studied in the preced-
ing subsection and in previous papers [1,2,4,5], respec-
tively. In the first place, the fractal dimension of the PF
fractal is equal to the dimension of the Euclidean space in
which PF is embedded in, that is, d,=2. Second, the im-
penetrable adsorbing boundary of PF is a fractal with
d,=In5/In3 (see Fig. 5), whereas both the MG and SG
fractals have d,=1. The fractal structure of the adsorb-
ing boundary of the PF fractal makes ’1ctT necessary to in-

troduce one weighting factor u =e ™ where €, is the
corresponding monomer-wall interaction (see Fig. 6).
Accordingly, xu is the weight of the steps along the
bonds that appear as bridges over unit holes on the ad-
sorbing wall.

In order to study the adsorption problem in the case of
the PF fractal, we follow the RG approach applied for
the MG fractal. Thus, for arbitrary nth stage fractal con-
struction, we introduce four restricted partition functions
B™ ¢ DWW and E™ (see Fig. 7), which satisfy the re-
cursion relations

B'=B*+2B%, (2.18)
C'=CXC*+E+D’B), 2.19)
D'=D(B?+2B%), (2.20)
E'=D*B+2B?%) . 2.21)

Here we have used the prime for the nth-order partition
functions and no indices for the (n — 1)th-order partition
functions. Now taking into account the arrangement of
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FIG. 5. Plane-filling (PF) fractal at the n =3 stage of con-
struction. The shaded region depicts the impenetrable wall,
with the absorbing boundary whose fractal dimension d; is
equal to In5/In3. It should be noticed that the fractal dimen-
sion d; of the entire PF lattice is equal to 2.
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FIG. 6. Weight factors of the SAW steps (monomers) on the
various bonds of the impenetrable boundaries of the (a) MG and
(b) PF fractal. Thus, for instance, the weight factor xw corre-
sponds to each step (adsorbed monomer) performed direct}y on
the boundary, where w is the Boltzmann factor w=e “ vk and
€, is the pertinent energy of the monomer-wall interaction.

bonds at the adsorbing wall (see Fig. 6), we assume the in-
itial conditions

BO=x, CO=xw, DO=xt, EO=xy . (2.22)

Accepting the above recursion relations as a set of RG
transformations, we find the three nontrivial fixed points
(b3, 0,b35t,b3t?),  [bpp,Crp(t),bipt,b3pt?], and
(0,1,0,0), which we shall call the bulk, crossover, and ad-
sorption fixed point, respectively. Here bpp =v2/2,
whereas Cpg(?) should satisfy the equation

3V2 5|
4

Cip(t) |[CHp(n) P+ 1, (2.23)

that is, Cpg(t) is given by

(9t2@ _‘/F_3)1/2__(P3)1/4
(48)1/3(Q)l/6(P)1/4

Crr(t)= s (2.24)

where
P=—8(3)'+(20H)'7,

(2.25)
Q=32+ [3(256+281£%)])1/2

/ w \

B(n) C(n)

Q) <
[4

(n)

E(“)

FIG. 7. Diagrammatic representation of the four restricted
partition functions for an nth stage construction of the PF frac-
tal. The fractal interior structure is not shown (it is indicated by
wiggles of the SAW paths).
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FIG. 8. Phase diagram for the PF polymer adsorption prob-
lem is the space of the interaction parameters w and t, for a
given value of u =0.5. The crossover line (solid line) merges
with the dotted line of the first-order phase transitions (which
appear in the region 0=t <t*). The bulk phase exists only for
x,=bpy, where b =V'1/2, while the adsorbed phase exists for
Xe < b;]:.

The RG analysis of the transformations (2.18)—-(2.21),
together with the initial conditions (2.22), reveals
different features, such as the appearance of a crossover
surface (instead of the crossover line), together with a
domain of the first-order phase transitions (see Fig. 8). In
Fig. 8 one can see that there are two regions: the bulk
phase region, which is the domain of attraction of the
bulk fixed point (b 3g,0,b3xt,bEpt?) that is characterized
by only one relevant eigenvalue Ap=3(b3}g)?
+10(b3z)*=4, and the adsorbed phase region, which is
domain of attraction of the adsorption fixed point
(0,1,0,0) whose relevant eigenvalue A , is equal to 5. The
eigenvalues Az and A , give the corresponding end-to-end
distance  critical = exponents v;=0.79248 and
v 4=0.682 61, which are both smaller than the respective
values for the MG fractal. For given u, the line
w=w™*(t,u) that separates the bulk phase region from
the adsorbed phase region (see Fig. 8) is given by the im-
plicit equation

(2.26)

If we start the iteration of the RG transformations
(2.18)—(2.21) with a point on the line w=w*(¢,u), the
crossover fixed point [b 3§z, C3r(2),bppt, bt?] is reached.
The latter has two relevant eigenvalues Az =4 and
Ag(1)=2+3[C3e(1)]%, which gives the following formula
for the crossover exponent:

_ In{2+3[Ce(D)]*}
a In4

Here we see again (as in the case of the MG fractal) that
¢ is continuous function of the monomer-wall interaction
parameter t. However, it appears that the values of the
function (2.27) in the region O0<z<t*, where
t*=2(3)!/8 are larger than one, which is physically un-
tenable, judging according to the formula (2.7). For this
reason, we have analyzed the first derivative of the singu-

o(¢) (2.27)
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FIG. 9 Critical fugacity curves for the PF fractal problem as
a function of the parameter w, for various values of ¢ and the
corresponding values of u that follow from (2.26) with w*=0.1.
One can notice the difference in behavior of these curves, for
t>t* and t <t*, in the vicinity of the point (b3z,0.1). Indeed,
precise numerical investigations revealed that the critical fuga-
city function x.(w), at the point (b$z,0.1), has a continuous
first-order derivative for ¢ >¢* and a discontinuous first-order
derivative for ¢t <t*, which confirms that for ¢ <t* the polymer
system undergoes the first-order phase transitions. The vertical
dotted line serves merely to facilitate location of the point
(bpg,0.1).

lar part of the free energy using the formula (2.4) (see Fig.
9). Thus, performing very accurate numerical investiga-
tions, we have found that the region 0<t<t* corre-
sponds to the first-order phase transitions between the
bulk and the adsorbed polymer phases. On the other
hand, for t* <t < oo we find that the singular part of the
free energy (2.4) has characteristics that are pertinent to
the critical behavior of the polymer system, with the
plausible values for the crossover exponent ¢ (see Fig. 10)
ranging between the extreme value ¢=1, for
t*=0.589 74, and the Euclidean value ¢=1 [10], which

appears in the limit £ — o0.

T T T
1.0 PF —
09 | 4
0.8 L B
=
I o7} N
F
0.6 |- 4
0.5 -
I L L
t*=0.58974 1.0 1.5 2.0 2.5

t=exp(-g,/kT)

FIG. 10. Crossover exponent ¢ for the adsorption problem
on the PF fractal. The dotted line represents the Euclidean
value of ¢=1. The range (0.5,1) of possible values of ¢ can be
compared with the specific lower limit ¢, =ln(%)/1n4
=0.576 00 and the upper limit ¢, =1In5/In9=0.73249 which
follow from the phenomenological proposal of Bouchaud and
Vannimenus [1].
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III. DISCUSSION AND SUMMARY

In the modern theory of critical phenomena, there are
notable examples of systems on the Euclidean lattices,
such as the two-dimensional XY model and the Ashkin-
Teller model, which have exponents that change continu-
ously as an interaction parameter varies. Recently, the
continuous dependence of a critical exponent on a param-
eter has been found in the case of oriented polymers
(oriented SAWSs) in which the short-range repulsive in-
teractions between two segments depend on their relative
orientations [11]. Moreover, continuous variation of a
critical exponent has been reported [12] in the case of a
dynamical two-dimensional XY model described in accor-
dance with the concept of the self-organized criticality
[13]. Within the framework of the RG theory, it has
been understood that continuously varying critical ex-
ponents with a parameter are related to the existence of
continuous manifolds of fixed points in the interaction
parameter space. Indeed, in the cases under study in this
paper, we have found that the continuous variation of the
crossover exponent ¢ is associated with existence of con-
tinuous lines of fixed points, which is, to our knowledge,
the first such example for systems situated on fractals.

The specific variation of the crossover exponent ¢ for
the MG and PF fractals is shown in Figs. 4 and 10, re-
spectively. Looking at these figures, one might be puz-
zled by the fact that ¢ decreases as the monomer-wall in-
teraction €, becomes more and more attractive (¢ — o).
However, one should keep in mind that the crossover
phenomenon (see Figs. 3 and 8) for increasing ¢ occurs
only if w decreases, that is, only if the monomer-wall in-
teraction €,, becomes increasingly repulsive, which alto-
gether makes the region close to the adsorbing wall more
and more neutral and, consequently, ¢ should decrease.
It is appropriate to compare here our findings with the
general upper ¢, =d,/d, and lower ¢,=1—(d;—d;)vp
limits proposed by Bouchaud and Vannimenus [1] for the
crossover exponent ¢. Inserting the relevant values for
d;, d r» and vp in the latter expressions, one can see that
in the case of the MG fractal ¢ goes beyond the upper
limit (¢, =0.61315), while in the case of the PF fractal
both limits (¢, =0.73249 and ¢, =0.576 00) are violated.
The reason for the violation of the lower bound in the
case of the PF fractal can be found in the assumption [1]
that the number of accessible sites p(z), as a function of
distance z from the adsorbing wall, should be a monotoni-
cally decreasing function. This assumption is plausible in
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the case of the MG fractal (see Fig. 1); however, it is
hardly tenable in the case of the PF fractal, in which case
p, instead of being a decreasing function of z, is a con-
stant (because the lattice above the adsorbing wall is com-
pact; see Fig. 5). Next we note that the reason for the
violation of the phenomenological prediction for the
upper bound of the crossover exponent ¢ in both cases
(MG and PF) lies in the presumption [1] that, for a poly-
mer that stays in equilibrium, the self-repelling energy is
homogeneously distributed in the adsorbed layer. This
presumption is conceivable in situations characterized by
small values of ¢, but not in those marked by larger
values of ¢ (which is exactly what happens in the cases
under study). Then a large number of monomers can be
found in close proximity of the adsorbing wall and conse-
quently the large part of the self-repelling energy be-
comes concentrated very close to the wall, bringing about
an inhomogeneous distribution of the self-repelling ener-
gy within the entire adsorbed layer, which in turn
violates the assumed requirement for polymer equilibri-
um. The observed violations, together with the previous-
ly found cases [5,14—16], call forth a work on augment-
ing the only known limits for the crossover exponent ¢
[1].

In summary, we may point out that in this work we
have found, for the fractal MG and PF lattices, that the
crossover exponent ¢ continuously varies with the pa-
rameter 1 =e¢ ' kT that measures the monomer-surface
interaction in the layer adjacent to the impenetrable ad-
sorbing wall. The same interaction was included in the
model of polymer adsorption in the case of the SG frac-
tals, but it was found [1,2,4,5] that the relevant crossover
exponents ¢ are independent of the interaction parameter
t. This distinction in the behavior of the crossover ex-
ponent in the two cases (MG and PF versus SG) can be
related to the distinction between the corresponding ei-
genvalues at the crossover fixed point. In the case of the
SG fractals, the variation of ¢ is dominated by the ir-
relevant eigenvalue (A, <1) [1], whereas in the case of the
MG and PF fractals ¢ is invariant under the RG transfor-
mations, that is, variation of ¢ at the crossover fixed point
is controlled by the marginal eigenvalue A,=1. In addi-
tion, we may note that the dependence of ¢ on ¢ appears
in the case of fractals in which the bonds that are weight-
ed by xt (see Fig. 6) are not mutually connected (in con-
trast to the case of the SG fractals). Finally, this observa-
tion can be corroborated by studying the adsorption
problem on the Koch curve type of fractals.
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FIG. 5. Plane-filling (PF) fractal at the n =3 stage of con-
struction. The shaded region depicts the impenetrable wall,
with the absorbing boundary whose fractal dimension d; is
equal to In5/In3. It should be noticed that the fractal dimen-
sion d of the entire PF lattice is equal to 2.



